Various Tissue Samples Stored in Biorepositories


A biorepository is a word used to describe a center that collects, processes, stores, and distributes biospecimens. The term “biobank” is used to refer to a collection of biospecimens obtained from humans, plants, and animals. Although there is a slight difference between biorepositories and biobanks, these terms are often used interchangeably as the distinction is blurry. These centers usually specialize in the collection of tissue samples. For example, in this article, the focus will only be on human biobanks. 


Over the last thirty years, the industry has changed greatly starting with small university-based biorepositories that were started to cater to the research needs of their projects. With time, these gradually evolved into government or institution supported biorepositories, virtual biobanks, commercial biorepositories, and more. The data stored with the biospecimens include diagnosis, date of biospecimen collection, patient phenotype, etcetera. Large scale biorepositories can be found in biobanks in countries such as Denmark, Sweden, Latvia, Iceland, United Kingdom (UK), Singapore, Japan, South Korea, Canada, Estonia, and the United States. Biorepository science has evolved due to the evolving requirements and needs of projects, researchers, and external regulatory pressures. These evolving requirements can be attributed to emerging fields such as personalized medicine, proteomics, genomics, and increasing precision of various science fields. This led to a higher demand for high-quality biospecimens that produces reliable, accurate, and standardized clinical data.  

Biobank Taxonomy and Activities

Human biospecimens have been collected and stored for more than a century. These biorepositories have advanced from simple record keeping in a laboratory notebook to computerization, procedure automation, specimen annotation, and more. The internet has also allowed the expansion of client communication and establishment of virtual biobanks. There are various types of biorepositories such as:

  • Population-based - Large population biobanks such as the Danish National Biobank that opened in 2012 as a collaboration between both private and public sectors make it possible to study populations over the duration of a whole lifespan. After a decade of planning, the UK biobank was established with the goal of improving diagnosis, treatment, and prevention of various diseases such as depression, cancer, diabetes, cardiovascular disease, and dementia. 

  • Disease centric – The University of California, San Francisco (UCSF) AIDS Specimen Bank (ASB) was established in 1982 due to the Acquired Immunodeficiency Syndrome (AIDS) epidemic at the time. Since the cause of AIDS was unknown at the time, various experts from different disciplines gathered together and developed a small biobank.

  • Commercial – Commercial biobanks are biorepositories that are for profit. 

  • Virtual – Virtual biobanks are electronic databases of biospecimens and related information. The University College London (UCL) biobank act as a physical repository for the collection of biospecimens and data from consented patients in hospitals who are at UCL partnered hospitals. 

  • Genetic or DNA / RNA

  • Project driven

Types of Tissue Samples

In a biorepository, there are various types of tissue samples. Typically, tissue samples that are available would include saliva, blood, serum, urine, tissue from different parts of the body, RNA, DNA, and diseased tissues. This enables the biorepository to cater to researchers in various fields to meet their research needs. In some biorepositories, the biospecimens can be classified based on disease such as:

  • Arthritis

  • Brain cancer

  • Breast cancer

  • Colon cancer

  • Cardiovascular disease

  • Cervical cancer

  • Diabetes

  • Dementia

  • Head and neck cancer

  • Lymphoma

  • Lupus

  • Leukemia

  • Multiple sclerosis

  • Normal tissue

  • Etcetera

It can also be categorized based on preparation:

  • Formalin-fixed paraffin-embedded (FFPE) tissue – Tissue samples obtained from the donor are fixed in formalin and embedded in paraffin wax for preservation.

  • Frozen tissue – Tissue samples are snap frozen and stored at low temperatures using liquid nitrogen to preserve DNA, RNA, and proteins.

  • DNA / RNA – DNA and RNA samples are available based on diseases, tumors, or disease-free (for control).

  • Human serum – Serum samples from normal and diseased tissues are also available.

Clients can always request the types of biospecimens they require for research and clinical trials from the biorepository based on their requirements. 

Best Practices

To ensure the quality of biospecimens, the biorepository needs to train their staff to follow “best practices”. 

  • International Society of Biological and Environmental Repositories (ISBER) has published a handbook known as “Best Practices for Repositories” and involves topics such as equipment, cost recovery, facilities, quality assurance, safety, quality control, ethical issues, shipping, processing, specimen collection, specimen retrieval, specimen culling, training, and more. 

  • National Cancer Institute (NCI) has developed the First-Generation Guidelines for NCI Best Practices for Biospecimen Resources. 

  • The Rand Corporation published the Best Practices for a Biospecimen Resource for the Genomic and Proteomic Era. 

Legalities and Ethics

The evolving industry constantly affects biobanks. New standards and regulations are regularly established to set new standards and protect patients and other parties in terms of privacy, confidentiality, and consent. Some ongoing issues include:

  • Providing results to study participants

  • Responsibility to report incidental findings or individual research results

  • Ownership of biospecimens

  • Privacy of patients

  • Consent for one or all research

  • Etcetera 


  1. Souza YG, Greenspan JS. Biobanking past, present, and future: responsibilities and benefits. AIDS. 2013; 27(3): 303-312.

  2. The difference between biobanks and biorepositories. Geneticist. Accessed 5/21/2019.

  3. The various tissue samples stored in a biorepository. Geneticist. Accessed 5/21/2019.